×

In this chapter, we will explore techniques for labeling text data for classification in cases where an insufficient amount of labeled data is available. We are going to use Generative AI to label the text data, in addition to Snorkel and k-means clustering. The chapter focuses on the essential process of annotating textual data for NLP and text analysis. It aims to provide readers with practical knowledge and insights into various labeling techniques. The chapter will specifically cover automatic labeling using OpenAI, rule-based labeling using Snorkel labeling functions, and unsupervised learning using k-means clustering. By understanding these techniques, readers will be equipped to effectively label text data and extract meaningful insights from unstructured textual information.

We will cover the following sections in this chapter:

  • Real-world applications of text data labeling
  • Tools and frameworks for text data labeling
  • Exploratory data analysis of text
  • Generative AI and OpenAI for labeling text data
  • Labeling text data using Snorkel
  • Labeling text data using logistic regression
  • Labeling text data using K-means clustering
  • Labeling customer reviews (sentiment analysis) using neural networks

Technical requirements

The code files used in this chapter are located at https://github.com/PacktPublishing/Data-Labeling-in-Machine-Learning-with-Python/tree/main/code/Ch07.

The Gutenberg Corpus and movie review dataset can be found here:

  • https://pypi.org/project/Gutenberg/
  • https://www.nltk.org/api/nltk.sentiment.util.html?highlight=movie#nltk.sentiment.util.demo_movie_reviews

You also need to create an Azure account and add the OpenAI resource for working with Generative AI. To sign up for a free Azure subscription, visit https://azure.microsoft.com/free. To request access to the Azure OpenAI service, visit https://aka.ms/oaiapply.

Once you have provisioned the Azure OpenAI service, set up the following environment variables:
os.environ[‘AZURE_OPENAI_KEY’] = ‘your_api_key’
os.environ[‘AZURE_OPENAI_ENDPOINT”) =’your_azure_openai_endpoint’

Your endpoint should look like https://YOUR_RESOURCE_NAME.openai.azure.com/.

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Posts

Example of video data labeling using k-means clustering with a color histogram – Exploring Video Data

Let us see example code for performing k-means clustering on video data using the open source scikit-learn Python package and the Kinetics...

Read out all

Frame visualization – Exploring Video Data

We create a line plot to visualize the frame intensities over the frame indices. This helps us understand the variations in intensity...

Read out all

Appearance and shape descriptors – Exploring Video Data

Extract features based on object appearance and shape characteristics. Examples include Hu Moments, Zernike Moments, and Haralick texture features. Appearance and shape...

Read out all

Optical flow features – Exploring Video Data

We will extract features based on the optical flow between consecutive frames. Optical flow captures the movement of objects in video. Libraries...

Read out all

Extracting features from video frames – Exploring Video Data

Another useful technique for the EDA of video data is to extract features from each frame and analyze them. Features are measurements...

Read out all

Loading video data using cv2 – Exploring Video Data

Exploratory Data Analysis (EDA) is an important step in any data analysis process. It helps you understand your data, identify patterns and...

Read out all